#version 450 core layout (constant_id = 0) const bool FOG = true; layout (constant_id = 1) const bool PBR = true; layout (constant_id = 2) const bool TRIPLANAR = false; layout (constant_id = 3) const bool STOCHASTIC = false; layout (constant_id = 4) const bool BLEND = true; layout (constant_id = 16) UNIT_SIZE = 8; // Ouput data layout(location = 0) out vec3 color; uniform sampler2DArray TextureAtlas; uniform sampler2DArray NormalAtlas; uniform sampler2DArray HOSAtlas; uniform mat4 View; uniform vec3 FogColor; #ifdef GEOMETRY in GeometryData #else in VertexData #endif { vec3 Position_modelspace; #ifdef GEOMETRY flat uint Textures[3]; vec3 TextureRatio; #else flat uint Texture; #endif vec3 FaceNormal_modelspace; vec3 FaceNormal_worldspace; vec3 EyeDirection_cameraspace; vec3 LightDirection_cameraspace; float Depth; } vs; vec3 expand(vec3 v) { return (v - 0.5) * 2; } vec2 hash2D(vec2 s) { // magic numbers return fract(sin(mod(vec2(dot(s, vec2(127.1, 311.7)), dot(s, vec2(269.5, 183.3))), 3.14159)) * 43758.5453); } vec4 textureStochastic(sampler2DArray sample, vec3 UV) { if(STOCHASTIC) { // triangular by approx 2*sqrt(3) vec2 skewUV = mat2(1.0, 0.0, -0.57735027, 1.15470054) * (UV.xy * 3.46400); // vertex id and barrycentric coords vec2 vxID = vec2(floor(skewUV)); vec3 barry = vec3(fract(skewUV), 0); barry.z = 1.0 - barry.x - barry.y; vec3 BW_vx0; vec3 BW_vx1; vec3 BW_vx2; vec3 BW_vx3; if(barry.z > 0) { BW_vx0 = vec3(vxID, 0); BW_vx1 = vec3(vxID + vec2(0, 1), 0); BW_vx2 = vec3(vxID + vec2(1, 0), 0); BW_vx3 = barry.zyx; } else { BW_vx0 = vec3(vxID + vec2(1, 1), 0); BW_vx1 = vec3(vxID + vec2(1, 0), 0); BW_vx2 = vec3(vxID + vec2(0, 1), 0); BW_vx3 = vec3(-barry.z, 1.0 - barry.y, 1.0 - barry.x); } vec2 dx = dFdx(UV.xy); vec2 dy = dFdy(UV.xy); return textureGrad(sample, vec3(UV.xy + hash2D(BW_vx0.xy), UV.z), dx, dy) * BW_vx3.x + textureGrad(sample, vec3(UV.xy + hash2D(BW_vx1.xy), UV.z), dx, dy) * BW_vx3.y + textureGrad(sample, vec3(UV.xy + hash2D(BW_vx2.xy), UV.z), dx, dy) * BW_vx3.z; } else { return texture(sample, UV); } } vec4 getTexture(sampler2DArray sample, vec2 UV) { #ifdef GEOMETRY if(BLEND) { vec4 colx = textureStochastic(sample, vec3(UV, vs.Textures[0])); if(vs.Textures[1] == vs.Textures[0]) { return vs.Textures[2] == vs.Textures[0] ? colx : mix(colx, textureStochastic(sample, vec3(UV, vs.Textures[2])), vs.TextureRatio.z); } else { vec4 coly = textureStochastic(sample, vec3(UV, vs.Textures[1])); return vs.Textures[2] == vs.Textures[0] ? mix(colx, coly, vs.TextureRatio.y) : ( vs.Textures[2] == vs.Textures[1] ? mix(coly, colx, vs.TextureRatio.x) : colx * vs.TextureRatio.x + coly * vs.TextureRatio.y + textureStochastic(sample, vec3(UV, vs.Textures[2])) * vs.TextureRatio.z); } } else { int mainTexture = vs.TextureRatio.x >= vs.TextureRatio.y ? (vs.TextureRatio.x >= vs.TextureRatio.z ? 0 : 2) : (vs.TextureRatio.y >= vs.TextureRatio.z ? 1 : 2); return textureStochastic(sample, vec3(UV, vs.Textures[mainTexture])); } #else return textureStochastic(sample, vec3(UV, vs.Texture)); #endif } vec3 getTriTexture(sampler2DArray sample, vec2 crdx, vec2 crdy, vec2 crdz, vec3 weights) { return getTexture(sample, crdx).rgb * weights.x + getTexture(sample, crdy).rgb * weights.y + getTexture(sample, crdz).rgb * weights.z; } void main() { float texScale = 1. / UNIT_SIZE; if(TRIPLANAR) { // Triplanar float plateauSize = 0.001; float transitionSpeed = 2; vec3 blendWeights = abs(vs.FaceNormal_modelspace); blendWeights = blendWeights - plateauSize; blendWeights = pow(max(blendWeights, 0), vec3(transitionSpeed)); vec2 UVx = vs.Position_modelspace.yz * texScale; vec2 UVy = vs.Position_modelspace.zx * texScale; vec2 UVz = vs.Position_modelspace.xy * texScale; vec3 tex = getTriTexture(TextureAtlas, UVx, UVy, UVz, blendWeights); if(PBR) { // Whiteout normal blend vec3 texNx = expand(getTexture(NormalAtlas, UVx).rgb); vec3 texNy = expand(getTexture(NormalAtlas, UVy).rgb); vec3 texNz = expand(getTexture(NormalAtlas, UVz).rgb); // Swizzle world normals into tangent space and apply Whiteout blend texNx = vec3(texNx.xy + vs.FaceNormal_worldspace.zy, abs(texNx.z) * vs.FaceNormal_worldspace.x); texNy = vec3(texNy.xy + vs.FaceNormal_worldspace.xz, abs(texNy.z) * vs.FaceNormal_worldspace.y); texNz = vec3(texNz.xy + vs.FaceNormal_worldspace.xy, abs(texNz.z) * vs.FaceNormal_worldspace.z); // Swizzle tangent normals to match world orientation and triblend vec3 worldNormal = normalize(texNx.zyx * blendWeights.x + texNy.xzy * blendWeights.y +texNz.xyz * blendWeights.z); vec3 texHOS = getTriTexture(HOSAtlas, UVx, UVy, UVz, blendWeights); } } else { // Cheap planar vec3 blendWeights = abs(vs.FaceNormal_modelspace); vec3 nrm = normalize(pow(blendWeights, vec3(80 / sqrt(UNIT_SIZE)))); vec2 UV = (vec2(vs.Position_modelspace.xy * nrm.z) + vec2(vs.Position_modelspace.yz * nrm.x) + vec2(vs.Position_modelspace.zx * nrm.y)) * texScale; vec3 tex = getTexture(TextureAtlas, UV).rgb; if(PBR) { vec3 texN = expand(getTexture(NormalAtlas, UV).rgb); // Swizzle world normals into tangent space and apply Whiteout blend // Swizzle tangent normals to match world orientation and triblend vec3 worldNormal = normalize(vec3(texN.xy + vs.FaceNormal_worldspace.zy, abs(texN.z) * vs.FaceNormal_worldspace.x).zyx * blendWeights.x + vec3(texN.xy + vs.FaceNormal_worldspace.xz, abs(texN.z) * vs.FaceNormal_worldspace.y).xzy * blendWeights.y + vec3(texN.xy + vs.FaceNormal_worldspace.xy, abs(texN.z) * vs.FaceNormal_worldspace.z).xyz * blendWeights.z); vec3 texHOS = getTexture(HOSAtlas, UV).rgb; } } // Colors if(PBR) { // Texture properties vec3 TextureDiffuseColor = tex; vec3 TextureAmbientColor = vec3(.1) * TextureDiffuseColor * texHOS.y; vec3 TextureSpecularColor = vec3(.8) * texHOS.z; vec3 Normal_cameraspace = normalize((View * vec4(worldNormal,0)).xyz); // Light emission properties // You probably want to put them as uniforms vec3 LightColor = vec3(1, 0.9, 0.9); float LightPower = 1.2f; // Distance to the light float distance = 1.0f;//length( LightPosition_worldspace - Position_worldspace ); // Direction of the light (from the fragment to the light) vec3 l = normalize(vs.LightDirection_cameraspace); // Cosine of the angle between the normal and the light direction, // clamped above 0 // - light is at the vertical of the triangle -> 1 // - light is perpendiular to the triangle -> 0 // - light is behind the triangle -> 0 float cosTheta = clamp(dot(Normal_cameraspace,l), 0,1 ); // Eye vector (towards the camera) vec3 E = normalize(vs.EyeDirection_cameraspace); // Direction in which the triangle reflects the light vec3 R = reflect(-l,Normal_cameraspace); // Cosine of the angle between the Eye vector and the Reflect vector, // clamped to 0 // - Looking into the reflection -> 1 // - Looking elsewhere -> < 1 float cosAlpha = clamp( dot( E,R ), 0,1 ); float visibility=1.0; // MAYBE: shadow color = // Ambient : simulates indirect lighting TextureAmbientColor + // Diffuse : "color" of the object visibility * TextureDiffuseColor * LightColor * LightPower * cosTheta / (distance * distance) + // Specular : reflective highlight, like a mirror visibility * TextureSpecularColor * LightColor * LightPower * pow(cosAlpha,5) / (distance * distance); } else { color = tex; } if(FOG) { float ratio = exp(vs.Depth * 0.69)-1; color = mix(color, pow(FogColor, vec3(2.2)), clamp(ratio, 0, 1)); } color = pow(color, vec3(1.0 / 2.2)); if(color.r > 1 || color.g > 1 || color.b > 1) { color = vec3(1, 0, 0); //TODO: bloom } }